
l .  
2. 

x- -d ._~  (~) 
Y " =  d.(~)--d~_~(T) ' n - - l ,  N; t=-~. 
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RESOLVING POWER OF THE ITERATION METHOD OF SOLVING INVERSE HEAT-CONDUCTION 

BOUNDARY-VALUE PROBLEMS 

S. L. Balakovskii UDC 536.24 

A quantitative estimate is obtained for the range of frequencies entering in the 
boundary condition that is restorable by using a solution of the inverse problem 
by an iteration method. 

Methods of solving inverse heat-conduction problems (IHCP) should possess smoothing 
properties that would not cause fluctuations of the solution. Such smoothing is assured, 
for instance, because of the natural step regularization [I], the introduction of extremal 
formulations of the IHCP and so-called stabilizing functionals [i, 2]. Regularized algo- 
rithms are used to seek the solution in a set of functions possessing a definite degree of 
smoothness, and suppress high frequencies in the parameters being recovered. However, if 
the fluctions in the desired characteristics are physical in nature, then the viscosity 
properties of the regularized algorithms do not permit detection of the fine structural 
features of the solution. 

Therefore, when solving the IHCP a situation must be met when the "noninertial" unregu- 
larized algorithms pass high frequencies, but because of incorrectness there is no possi- 
bility of clarifying the physical component among them and regularization does not afford such 
a possibility because it filters high harmonics independently of their origin. There, there-, 
fore, arises the problem of determining the range of frequencies in the restorable parameters 
as a preliminary step in the selection of methods of raising the accuracy of solving the IHCP~ 
especially in the case of complex behavior of the desired functions. Increasing the measure- 
ment accuracy, taking account of a priori information [I], rational placement of the tempera- 
ture sensors in the object under investigation with application of the Fisher information 
matrix [3] can be such methods. 

Two reasons for suppression of the high frequencies are represented essential for the 
solution of inverse problems: the smoothing action of the heat-conduction operator and the 
discretization of the continuously formulated problem. 

To obtain quantitative estimates of the passband, we consider the model of a semiinfi- 
nite body with thermal diffusivity coefficient a. As is noted in [i], the smoothing action 
of the heat conduction operator can be estimated by giving the change in body surface tem- 
perature according to a sinusoidal law T W = Tosin(m~). Then after a certain time the tem- 
perature at a depth h will also be described by a sinusoid [4] 

T(tt, z) = Thsin (my-- ~), (1) 

where  q i s  a c e r t a i n  phase  d i f f e r e n c e .  

The amplitude of the oscillations T h is defined as follows 

(2) 
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Introducing the dimensionless frequency ~ = ~h2/a, we have 

(3) 

(see Fig. i). Considering the quantity E the relative error in measuring the temperature, we 
obtain an expression for the value of the critical frequency ~cr~; 

~cn : 2 In z e. (4) 

It is natural to consider that all frequencies ~ ~ ~crz penetrate to a depth h and are 
detected by a sensor, while the higher ones are delayed. Therefore, frequencies from the in- 
terval 10.2 inael will be present in the parameter restored by means of solving the IHCP, while 
the higher harmonics turn out to be unrestorable. 

Moreover, since straight lines are used in each iteration in the gradient method of solv- 
ing the IHCP, higher harmonics from this interval turn out to be attenuated in some measure 
or other. 

Another constraint on the upper boundary of the passband is, as already noted, due to 
discretization of the time interval for the numerical realization of the IHCP (natural step 
regularization). If it is considered that the least period of fluctuations corresponds to 
four time steps AT (Fig. 2), then from the condition 

4~AT~2~ (5) 

the constraint 

. nh 2 
~cr2 -- (6) 

2aA~ 

can be obtained. 

Results of restoring the heat flux density deliverable to the boundary of a semiinfinite 
body from the solution of an IHCP in an external formulation are presented below. 

The entrance temperature f(~) was given in the form of a Duhamel integral 

S ~ 
~(T) = --:-q~(~)G(h, O; x--~)d~,  (7) 

where qM(T) is the model (real) heat flux density on the boundary, and G(x, y; r) is the 
Green's function of the boundary-value problem for a semiinfinite body [5]: 

O(x, y ; ~ ) =  2V~-~l { [exp (x--Y)2]+exP[4ax (x+Y)2 ] } 4 a v  " " (8) 

The solution of the IHCP reduces to searching for the function q(x) that minimizes the 
residual 

sin'~ 

0 

I i f i 

o e ~ ! i 

Fig. i Fig. 2 

Fig. I. Dependence of the amplitude attenuation factor on the dimen- 
sionless fluctuation frequency. 

Fig, 2. Restoration of one sinusoid wave by means of four discretiza- 
tion steps. 
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TABLE i. Dependence of the Quantities k and D on the Dimension- 
less Frequency ~ for the 100th Iteration 

~0 0 1 2 3 4 5 I 6 7 8 9 

0,49 0,37 
0,99 

0,29 
0,98 

0,24 
0,94 

I 
0,21 ] 0,18 
0,83 I 0,69 

0,15 [ 0,13 I 0,12 
0,55 0,42 0,33 

where 

-t" m 

i (q) = ~ [T (q, h, ~) - -  f (~)12 d'c, 
0 

(9)  

T 

T(q, h, ~)=  j + q ( ~ ) G ( h ,  O; ~--~)d~ (10) 
0 

is the solution of the direct problem of heat conduction to which the heat-flux density q(~). 

Accord ing  to the  method of  c o n j u g a t e  g r a d i e n t s ,  the  i t e r a t i o n  p r o c e s s  f o r  app roach ing  
the  minimum p o i n t  of  the  f u n c t i o n a l  (9) i s  r e a l i z e d  as  f o l l o w s  [ 1 ]  

(n+l) (n) 
q (~) = q (x) - -  [~nS,~ ('~), n = O, 1, 2 . . . . .  (11) 

(n) 
Sn (x) = J~ ('c) - -  ?,~S,_, ('v), (121 

~ra (n) 
[ [Jq( T)lzd~ (13) 
b , % = 0 .  

"~n ~ Xm ( n - - l )  

j" t J; ( )12a  
0 

(n) 
The o p t i m a l  dep th  of  the  s t e p  a t  the  n - t h  i t e r a t i o n  was found from the  c o n d i t i o n  J(q--~Sn)-~ 
rain: 

Xm (n) 
j" IT(q, h, ~)--f( 'OIAT(~)d~ (14) 

0 

where AT i s  the  s o l u t i o n  of  t he  d i r e c t  problem of  h e a t  c o n d u c t i o n  in  i n c r e m e n t s :  

z a 

AT(x)----.[--~--S,(~)O(h, 0; ~--~)d~.  (15) 
0 

The gradient of the functional at the n-th i~eration was determined by means of the for- 
mula 

(n) Xm (n) 
J$(x)----2 S [ T ( q ,  h, ~)--[(~)lG(h, 0; ~--~)d~. 

T 

(161 

A program was compiled in the language PL/I for the numerical realization of the algo- 
rithm. The following values were taken for the parameters in the computations: I = I0 W/m'~ 
a = 10 -6 m2/sec, h = 10 -3 m. 

Illustrated in Fig. 3 is the resolution of the iteration method. The magnitude of the 
time step AT was taken equal to 0.i sec, which, according to condition (6), eliminates the 
influence of the natural step regularization on the smoothing action of the algorithm if 
harmonics with frequencies ~ ~ 15.7 are present in the solution. The model heat flux den- 
sity was given in the form qM(T) = qo[l + sin(mT + ~)], where ~, q0 are constants. As is 
seen from Fig. 3, in this case the restoration of the heat flux density depends on the time 
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Fig. 3. Results of solving the IHCP on 
restoring the heat flux density with ~ = 
1.26 (a), 2.00 (b), 6.28 (c), 8.38 (d) 
(undisturbed initial data: i) actual 
solution; 2) restored solution (100th 
iteration), q, 106 W/m s , T, sec. 

q(T) = qo[l + n(~) sin (eT + a)], where as the frequency ~ grows attenuation of the appro- 
priate harmonic occurs. Just as the parameter k(~), governing the smoothing properties of 
the heat conduction operator, the function q(~), that characterizes the "viscosity" of the 
interaction algorithm for solving the IHCP, decreases as ~ grows but rather differently than 
k. Certain values of these functions are presented in the table. 

Therefore, if the actual heat flux density qM(T) is characterized by the spectral den- 
sity of the distribution Q(~) [6]: 

r 

qM ('r - -  [ Q (co) cos (o" 0 do,  ( 1 7 )  

then its restoration by using the iteration method of minimizing the functional will result 
in the appearance of a filtering factor n(m) in the spectral density Q: 

c,)~p 
2 �9 q ('0 = ~ ! ,1 (o) Q (o) cos (o~) de0. (18) 

Presented in Fig. 4 are results of restoring a model heat flux density qM(z) = qo[1.33+ 
cos (1.26T) + cos 0.4 (7.67~)]withthe perturbed input data f6 = f + Af, where Af is a random 
variable distributed in the segment [-0.08fma x, 0.08fma x] according to a uniform law. It is 
seen that the halt of the iteration process according to the condition of matching the resi- 
dual to the error in the input information results in suppression of the higher harmonics in 
the solution which can be restored because of diminution in the effect of noisiness, i.e., 
raising the accuracy of measuring the temperature. 

q 

2 " " I 

, 

0 ! 2 '1~ 

Fig. 4. Suppression of the high-frequency 
harmonics in solving the IHCP (input data 
perturbed according to a uniform law): i) 
actual solution; 2) 4th iteration (half 
of the iteration process according to the 
residual criterion). 
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NOTATION 

T, design temperature; f, input temperature; T, time; AT, time step; ~, circular fre- 
quency; ~, dimensionless circular frequency; k, fluctuation amplitude attenuation coeffi- 
cient: q, heat-flux density on the body boundary; a, thermal diffusivity factor; ~, heat- 
conduction coefficient; h, distance from the body surface to the point of temperature mea- 

' ~ �9 �9 

surement; G, Green's function; J, functional; Jq, gradient of the functzonal; Sn, dmrectzon 
of descent in the n-th iteration, and n, viscosity index of the iteration algorithm. 

LITERATURE CITED 

i. O.M. Alifanov, Identification of Heat Transfer Processes of Flying Vehicles [in Rus- 
sian], Moscow (1979). 

2. A.N. Tikhonov and V. Ya. Arsenin, Methods for Solving Incorrect Problems [in Russian], 
Moscow (1979). 

3. E.A. Artyukhin, "Methods and facilities for machine diagnostics of gas turbine engines 
and their elements," Abstracts of Reports, 2, 58-59, Kharkov (1983). 

4. A.V. Lykov, Theory of Heat Conduction [in Russian], Moscow (1967). 
5. A.G. Butkovskii, Characteristics of Systems with Distributed Parameters [in Russian], 

Moscow (1979). 
6. I.N. Bronshtein and K. A. Semendyaev, Handbook on Mathematics [in Russian], Moscow 

(1980). 

REGULARIZATION OF THE SOLUTION OF THE INVERSE HEAT-CONDUCTION PROBLEM IN 

A VARIATIONAL FORMULATION 

A. D. Markin and G. G. Pyatyshkin UDC 536.2 

A version of the solution allowing numerical minimization of the target functional 
to be eliminated is considered. 

The effectiveness of a combination of analytical and numerical methods of solution for 
the analysis of inverse heat-conduction problems (IHP) is a result of many factors. One of 
the most significant is analytical analysis, which largely determines the algorithm for solu- 
tion of the IHP as a whole. In this respect, the example of using gradient methods to solve 
IHP is illustrative [i]. Finding the analytical expression for the gradient of the func- 
tional which eliminates the operation of numerical differentiation markedly expands the re- 
gion of application of the algorithm developed. At present, there is an extensive biblio- 
graphy on IHP solution; see [2], for example. However, despite the wealth of literature 
sources, the development of effective and simple computational algorithms even for one-dimen- 
sional IHP remains an urgent problem. This is associated with the multiplicity of IHP for- 
mulations sometimes requiring separate approaches, the increase in the demands on the accur- 
acy of the results obtained, the appearance of new computational techniques permitting model- 
ing at a qualitatively new level, and so on. 

Now consider a version of the regularization of IHP solution in a variational formula- 
tion, which combined numerical and analytical methods of analysis and allows a sufficiently 
simple algorithm for boundary-condition identification to be obtained. 

The basis of the approach is to establish the relation between the conditions defining 
the IHP and the desired boundary conditions [3]. For example, insolving IHP for a plane wall, 
this relates the known temperature and its gradient at one boundary to the desired tempera- 
ture or its gradient at the other boundary. 

In general form, the variational formulation of IHP was given in [1]. 

Defining the target functional analogously gives 
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